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Abstract 

The demand on energy is now increasing at an unprecedented rate due to the high technology 

revolution. Unfortunately, we can no longer depend on the current energy resources, which is 

mainly fossil fuels, since they are limited and have dangerous impacts on the environment. 

Hydrogen has recently received a great attention as an alternative fuel because it is a renewable, 

clean fuel and its energy content is three times that of gasoline. Photoelectrochemical water 

splitting is a very attractive method of producing hydrogen due to its simplicity and low cost. 

However, the semiconductor material used as the photoanode still needs to be optimized.  

Ta2O5 is considered a very promising semiconductor material for water photolysis as its 

conduction band minimum and valence band maximum are suitable for water splitting beside 

being highly stable in aqueous solutions. Unfortunately, the material’s bandgap is ~3.9 eV, 

which limits its absorption spectrum to the ultraviolet region. However, mixing Ta2O5 with WO3 

(2.7 eV) is expected to red shifts its absorption to the visible region.  

We used Density Functional Theory (DFT) to study the electronic and optical properties of 

Ta-W-O system. Unfortunately, the reported calculations so far failed to estimate the bandgap 

with an acceptable accuracy that enables the understanding of the optoelectronic properties of the 

material. Herein, we proposed a new crystal structure and showed that the use of PBE0 hybrid 

functional reduced the error in bandgap estimation from 95% to 5% resulting in a calculated 

bandgap of 3.7 eV. This bridges the gap further between ab-initio DFT calculations and 

experiments.  

Using the proposed structure for Ta2O5, we calculated the band structure and the hole 

effective mass for Ta-W-O system. The bandgap calculations showed a large and composition-
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dependent bowing parameter. The electron excitation from the Ta2O5 valence band to WO3 

conduction band at high W content may contribute to the pronounced decrease in the conduction 

band energy. The staggered bandgap type between Ta2O5 and WO3, as revealed from the energy 

band diagram, resulted in efficient charge carriers separation. The minimum effective mass 

occurs along the y-direction and decrease monotonically with increasing W content.  

Based on the DFT calculations, preliminary experimental work was carried out on low 

concentration W alloys, namely 2.5% and 10%W. Diffuse reflectance measurements show that 

the bandgap decreases with increasing W content. This suggests that alloys with high W content 

are able to harvest a wider range of the solar spectrum and hence higher photo-conversion 

efficiency.  Moreover, XRD analysis showed that the alloys maintained the orthorhombic 

structure of pristine Ta2O5. However, the lattice parameters expanded as the W content increased 

owing to larger atomic radius of W. Furthermore, XPS analysis asserts the charge transfer model 

that was drawn from DFT calculations in which the charge carriers are transferred from the 

valence band of Ta2O5 to the conduction band of WO3. Finally, the photocurrent of 10%W alloy 

was increased by about 100x compared to pristine Ta2O5.  
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1.1 Energy Crisis 

Mankind needs energy to make to live. Since the Industrial Revolution, humans have used fossil 

fuels as their primary energy source. As the world becomes more civilized, the demand on 

energy increases resulting in the depletion of fossil fuel reserves at a much higher rate than in the 

past. Figure 1.1 shows the consumption of oil and gas, as examples of fossil fuels, over a long 

period of time [1]. Up to the beginning of the twentieth century, the consumption of reserves was 

practically negligible. The consumption then rises exponentially to a maximum that will be 

reached after one or two decades. After reaching that maximum, the consumption will decrease 

again due to the gradual depletion of the reserves. The reserves which have accumulated over 

millions of years will be used up over a period of about one hundred years [1]. 

 

 

Figure 1.1: Annual consumption of oil. The area under the curve gives the estimated total oil reserves [1]. 

A more serious problem occurs during the combustion of the fossil fuels. The burning of 

fossil fuels produces CO2 gas through the reaction between carbon found in fossil fuels and 
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oxygen found in the atmosphere. If the rate at which oxygen is produced by plants through 

photosynthesis is less than the rate at which it is consumed through combustion of fossil fuels, 

the amount of oxygen in the atmosphere will be reduced; threatening the life on earth. 

Furthermore, continuing to add carbon dioxide to the atmosphere is projected to lead to 

significant and persistent changes in climate, including an increase in the average global 

temperature of 1.4°C to 5.8°C over the course of this century [2]. All tri-atomic molecules, 

including CO2, are good absorbers in the infrared region. To keep the temperature of the earth 

stationary, the solar radiation incident from the sun reaching the surface of the earth should be 

balanced with the energy emitted by the surface of the earth to outer space. In the presence of 

CO2, a great part of the energy emitted by the surface of the earth is absorbed by CO2 which 

increases the temperature of the atmosphere and hence heat energy is re-emitted back to the 

earth. This is known as the green house effect [1]. Figure 1.2 illustrates the relationship between 

temperature and atmospheric carbon dioxide concentrations over the past 150 years. It is clear 

that the rise of the global temperature matches with the concentration of carbon dioxide [3, 4]. 

 

 

 

 

 

 

 

Figure 1.2: The relationship between atmospheric CO2 concentration and surface temperature for 
the past 150 years. Source of CO2 Concentration data: [3], Source of Temperature data: [4] 
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Increasing the global temperature has worldwide implications including, but not limited to, 

the melting of glaciers and the rise of sea level. Statistics showed that[2] the maximum surface-

melt area on the Greenland Ice Sheet, which dominates land ice in the Arctic, increased on 

average by 16% from 1979 to 2002, an area roughly the size of Sweden, with considerable 

variation from year to year. Figure 1.3 compares the melt extent on Greenland in 1992 and 2002 

[2]. It is obvious that the rate of melting is rising tremendously. Global average sea level rose by 

about eight centimeters in the past twenty years and the rate of rise has been increasing. The 

primary factors contributing to this rise are thermal expansion due to ocean warming and melting 

of land-based ice that increases the total amount of water in the ocean. Global average sea level 

is projected to rise 10 to 90 centimeters during this century, with the rate of rise accelerating as 

the century progresses. Models indicate that warming over Greenland is likely to be of a 

magnitude that would eventually lead to a virtually complete melting of the Greenland Ice Sheet, 

with a resulting sea-level rise of about seven meters. 

 

 

 

 

 

 

 Figure 1.3: Greenland Ice Sheet Melt Extent [2] 
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Global warming also affects the life of birds and animals. For example, polar bears are 

unlikely to survive if there is an almost complete loss of summer sea-ice cover, which is 

projected to occur before the end of this century. The loss of polar bears is likely to have 

significant and rapid consequences for the ecosystems that they currently occupy. Also, the ice-

dependent seals are particularly vulnerable to the observed and projected reductions in arctic sea 

ice because they give birth to and nurse their pups on the ice and use it as a resting platform. 

Furthermore, several hundred million birds migrate to the Arctic each summer. Important 

breeding and nesting areas are projected to decrease sharply as tree line advances northward. A 

number of bird species, including several globally endangered seabird species, are projected to 

lose more than 50% of their breeding area during this century [2]. 

For these reasons, scientists started to look for better energy alternatives that are not harmful 

to the environment. Solar energy is the most appealing energy source to replace fossil fuel since 

it is renewable and clean. Furthermore, the amount of solar energy reaching the earth is four 

orders of magnitude greater than the current world’s energy consumption [5]. Unfortunately, 

solar irradiance is neither constant nor permanent throughout the whole day and so an energy 

storage medium is required. In this regard, hydrogen is a very promising medium to store solar 

energy for the following reasons: 

1. The energy content per unit mass of hydrogen is three times that of gasoline [6] 

2. Upon combustion in air, hydrogen does not emit any green house gases, i.e.  

environmentally friendly [7]. 

3. It can be stored in liquid, gaseous, or metal halide forms [7]. 

4. It can be transported over large distances through pipelines [7]. 
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 There are several methods to produce hydrogen. About 95% of the hydrogen produced in 

the United States is produced via steam-methane reforming method, which involves a 

reaction between methane and water vapor [7]. Unfortunately, this reaction produces carbon 

monoxide and carbon dioxide gases as byproducts, which are hazardous to the environment. 

Producing hydrogen in a clean way is highly desirable in order to obtain a sustainable 

hydrogen fuel. Towards this end, water splitting by solar energy represents a very attractive 

avenue to produce hydrogen as it does not involve the production of any harmful gases 

throughout the whole process of hydrogen production.  

1.2 Physics of Water Splitting 

 Figure 1.4 shows a schematic diagram of the photochemical water splitting system. It 

consists of an n-type semiconductor that acts as a photoanode and a metal electrode acting as the 

cathode. When light strikes the photoanode, electrons are excited from the valence band to the 

conduction band generating an electron-hole pairs. The holes diffuse to the interface between the 

photoanode and water and combine with oxygen ions in water forming O2 gas at the anode. The 

hydrogen ions formed after the oxidation of water will diffuse towards the cathode. At the same 

time, the excited electrons will flow through the wire to the cathode and combine with hydrogen 

ions forming hydrogen gas. Likewise, a p-type semiconductor can be used, which in this case 

acts as a photocathode in combination with a metal anode. However, this setup is less common 

as most p-type semiconductors are not stable in aqueous solutions.  
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To effectively produce hydrogen, the semiconductor photoanode should fulfill several 

requirements: (a) the semiconductor should have a bandgap of nearly 2 eV; (b) the position of 

the conduction band minimum should be more negative than the hydrogen evolution potential 

and the valence band maximum should be more positive than the oxygen evolution potential; (c) 

the semiconductor should be relatively stable in aqueous electrolytes [8, 9].  

Figure 1.5 illustrates the band diagram of the photoelectrochemical cell [7]. In Figure 

1.5a, no contact was yet established between the electrodes and the electrolyte. Upon contact, the 

photoanode should be in equilibrium with the electrolyte and so electrons flow from the 

photoanode to the electrolyte leaving a depletion region of positive ions in the photoanode. The 

positive ions attract negatively charged electrolyte forming a Helmholtz layer. This creates an 

electric field which, in turn, creates band bending as shown in Figure 1.5b. This electric field acts 

as a barrier against further flow of electrons to the electrolyte and hence, upon illumination, only 

holes can flow to the electrolyte whereas the electrons are swept to the bulk and then flow 

through the wire to the cathode. EB denotes the height of this barrier which is the difference 

Figure 1.4: Schematic diagram of photoelectrochemical cell 
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between the positions of the conduction band minimum before and after contact with the 

electrolyte. When the photoanode is illuminated (Figure 1.5c), electron-hole pairs are generated. 

The generated electrons combine with some of the positive ions in the depletion region and 

reduce the potential barrier. The holes can drift to the interface between the photoanode and 

water and produce oxygen, however, the Fermi level of the metal cathode is still below the 

hydrogen evolution potential and hence hydrogen cannot be produced. This problem is alleviated 

by adding an external bias, as shown in Figure 1.5d. The bias can either be provided electrically 

through a voltage source or through direct connection with the output port of a solar cell, hence 

making the hydrogen production process sustainable.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

Figure 1.5: Band diagram of a two-electrode photoelectrochemical cell (a) no contact, (b) equilibrium in dark, (c) equilibrium 
under illumination, (d) illumination under applied bias [7]. 
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Another important issue that arises when designing an efficient photoelectrochemical cell is the 

stability of the semiconductor electrode. This originates from the photo-generated electron-hole 

pairs. The generated electrons and holes can reduce or oxidize the semiconductor, respectively, 

leading to photocorrosion. To address the electrode stability in the electrolyte, Gerischer [10] and 

Bard [11] developed a simple model in which the electrode stability is represented by a cathodic 

and anodic redox potentials on an energy band diagram to represent the stability of the electrode 

when being used as a cathode or an anode, respectively. This is illustrated in Figure 1.6. In order 

for the semiconductor electrode to be stable as a cathode, the cathodic redox potential should be 

located above the electrode’s conduction band minimum whereas the electrode is considered 

stable as an anode if its anodic redox potential is below the valence band maximum. Figure 

1.6b,c suggest that an electrode can be stable for either oxidation or reduction process. It can also 

be unstable for both processes as depicted in Figure 1.6c.  

 

 

 

 

 

 

 

 

 

Nanotechnology can be implemented in photoelectrochemical cells in order to improve its 

efficiency. Nanoparticle photoanodes can offer higher efficiency owing to the increased surface 
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Figure 1.6: Energy level diagrams of a semiconductor in an electrolyte under the conditions of: (a) electrode stability, (b) 
cathodic decomposition, (c) anodic decomposition, (d) anodic and cathodic decomposition 
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to volume ratio, which increases the total active area for the water splitting process. Also, 

nanoparticles increase the effective optical path of photons by enhancing the scattering and 

hence leading to better absorption. However, the generated electrons suffer from random walk 

between the nanoparticles and are subject to potential recombination in the defect states at the 

grain boundaries between the nanoparticles, Figure 1.7a [12]. Fortunately, nanotubes can 

overcome this problem by allowing a vectorial charge transfer through the wall thickness of the 

tubes whereas light absorption occurs along their lengths, as depicted in Figure 1.7b [12]. It is 

clear that one can design the nanotubes such that they have a wall thickness lower than the 

diffusion length to minimize charge recombination and at the same time have enough length to 

increase the light absorption.  
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1.3 History of Photoanodes 

The first demonstration of water splitting was demonstrated by Fujishima and Honda in 1972, 

using a single crystal TiO2 electrode[13]. Although TiO2 is cheap and relatively stable in 

aqueous solution, the efficiency was very low due to its large energy gap (~3 eV). Since then, a 

lot of efforts have been exerted in order to discover efficient materials for water splitting. III-V 

materials can offer very high efficiencies[14]. However, they are not stable in water besides 

being very expensive. Several metal oxides have also been investigated in search for a more 

efficient photoelectrochemical water splitting process[12, 15-20]. However, none of the 

investigated semiconductors simultaneously satisfy all the three criteria required for water 

splitting by solar energy. Therefore, new materials are still to be discovered and designed. 

Figure 1.7: Schematic diagram of electron transport through: (a) spherical nanoparticles, (b) nanotubes [12]. 
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Towards this end, scientists tried to mix materials together, in an attempt to arrive at a new 

material with enhanced photocatalytic activity. For example, Park et al.[21] and Asahi et al.[22] 

studied the effect of doping TiO2 with nonmetals, namely carbon and nitrogen, respectively. 

They found that upon doping, the absorption spectrum of TiO2 is extended into the visible 

region. Also, there have been some attempts to dope TiO2 with transitional metals[23] or even to 

use mixed metal oxides[24, 25]. These studies showed similar results as nonmetal dopants. 

However, the overall efficiency remained low. Beside TiO2, other metal oxides have been 

studied. For instance, doping WO3 with other metals such as Ti[26], V[27], and Cu[28] has been 

considered with a reported enhancement in photocatalytic activity upon doping. The main goal of 

these studies was to reduce the bandgap of WO3 and hence widens its absorption spectrum. 

Unfortunately, even a wide absorption does not guarantee an efficient water splitting process 

since the conduction band edge of WO3 lies below the hydrogen evolution potential by 0.4 

eV[29, 30] and hence an external bias is required to split water. More interestingly, for V-doped 

WO3, the bandgap initially increases from 3.16 eV to 3.28 eV for V/W of 0.003 then it decreases 

back to 3.15 eV at V/W of 0.047[31]. A similar phenomenon occurs on doping BiVO4 with W 

and Mo in which the bandgap remained unchanged after doping [32]. The enhancement in the 

photocatalytic activity for that system is believed to be due to the better separation of the photo-

generated electron-hair pair [32]. 

1.4 Density Functional Theory  

The above discussion shows that different dopants have different effects on materials and hence 

a systematic approach is required to better understand these effects. Also, in order to design an 

efficient material for water splitting, the structure, optical, and electrical properties of the 
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material has to be carefully studied. Density Functional Theory (DFT) is a very powerful tool 

towards this end. In this section we discuss the basics of DFT and show how it can be used to 

design efficient photoanodes for water splitting cells.  

1.4.1 Pre-DFT attempts 

The physical and chemical properties of any system can be determined exactly by solving the 

many-body Schrodinger equation: 

         ),(),(ˆ RrERrH
iii

                                (1.1) 

where i is the wave function of the system, Ei is the eigen-values, which are the allowed energy 

states produced by solving (1.1), and Ĥ is the Hamiltonian operator. For interacting atoms, Ĥ is 

defined as [33]: 
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where R = {RI}, I = 1, …, P, is a set of P nuclear coordinates and r = {ri}, i = 1, …, N, is a set of 

N electronic coordinates. ZI and MI are the P nuclear charges and masses, respectively. When 

interpreted physically, the first term on the right hand side of (1.2) is the kinetic energy of the P 

nuclei, the second term is the kinetic energy of the N electrons, the third term is the Coulomb 

repulsive potential between each pair of nuclei, the fourth term is the Coulomb repulsive 

potential between each pair of electrons, and the fifth term is the Coulomb attraction potential 

between the electrons and the nuclei in the system. 

 It is obvious that the Hamiltonian for such systems is very complicated and requires large 

computational effort especially for large atoms and molecules. Also, the analytical expression for 
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the many-electron Hamiltonian is not known. For these reasons, various simplifications have 

been introduced to (1.2). The first approximation is the Born-Oppenheimer approximation [34] 

which is based on neglecting the kinetic energy of nuclei and treating their repulsive potential as 

a constant. The plausibility of this approximation is due to the fact that the mass of the nuclei is 

much greater than that of the electrons and thus the nuclei can be assumed stationary with respect 

to the electrons. This gives rise to the so-called electronic Hamiltonian: 
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The electronic energy, Eelec, can be found by substituting (1.3) in (1.1). The total energy can then 

be calculated by adding Eelec to the constant nuclear repulsion term Enuc: 
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 Although the Hamiltonian was greatly simplified by the Born-Oppenheimer approximation, 

the second term in (1.3) still represents a computational problem as it involves pair-wise 

Coulombic correlation between electrons and hence it is required to consider the contribution of 

two electrons every time we write the wave function. This renders the wavefunction complicated 

and the solution of Schrodinger equation hard. Hartree proposed a solution to this problem by 

assuming that each electron in the system feels an average potential energy due to the other 

electrons [35]. This allows for treating a single electron at a time and consequently to express the 

wave function as a product of one-electron wave functions. It uses separation of variables to 

solve Schrodinger equation, which greatly simplifies the calculations. To determine the 

expressions for the one-electron wave functions, Hartree and Fock introduced a method which 

took into account Pauli Exclusion Principle where the many-electron wave function is 
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approximated by a product of anti-symmetrical one-electron wave functions in the form of a 

Slater determinant [33]:  
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where ri signifies the spatial position of the electron i and  signifies its spin. i(ri, i) are 

expressed as a Linear Combinations of Atomic Orbitals (LCAO) to form Molecular Orbitals 

(MO). Using this approximation, the energy of the system can be calculated as: 
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where Hi represents the kinetic energy and the electron-nucleus Coulomb attraction, Jij are the 

coulomb integrals, which represent the repulsive potential that the electron feels due to an 

average distribution of the rest of the electrons, and Kij is the exchange integrals that are a 

quantum mechanical effect occurring due to the overlapping of orbitals, which combines all 

possible permutations of electron energy distribution in the system. This approximation is called 

Hartree-Fock (HF) or Self-Consistent Field (SCF) approximation and it includes particle 

exchange in an exact manner [36, 37]. The main drawback of this method is that the 

computational effort needed to compute (1.5) scales by M
3
, where M is the number of atomic 

orbitals. 

1.4.2 Development of DFT 

Despite the different approximations applied to the Hamiltonian and the wave function, solving 

Schrodinger equation remains very hard and nearly impossible for large atoms and molecules 

(1.5) 
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since the wave function is a function of 3N variables, where N is the number of electrons in the 

system. Density Functional Theory solved this problem by reducing the number of variables to 

three variables only [38]. This is because DFT is based on using the electron density, which is a 

function of the three spatial coordinates, to calculate the energy of the system. This considerably 

reduced the computational cost and allowed for determining the physical and chemical properties 

of large atoms and molecules.  

  The efforts of Thomas [39] and Fermi [40], which dates back to 1927, represent 

the seed of the DFT. In Thomas-Fermi model, the energy of the system is calculated in terms of 

the electron density as: 

  

   21

12

213/53/22

TF dd
r

)()(

2

1
d

r

)(
Zd)()3(

10

3
)]([E rr

rr
r

r
rrr




                             

where  is the electron density. The first term in (1.7) represents the kinetic energy of electrons, 

the second term is the nuclear attraction between nuclei and electrons, and the third term is the 

Coulomb repulsion between electrons. The kinetic energy term is found by solving a particle in a 

box problem assuming a constant electron density. This is a very crude approximation since the 

electron density is non-uniform and is actually rapidly changing near the nuclei. Also, the 

exchange and correlation effects are neglected [33]. In 1930, Dirac used the uniform electron 

density approximation to introduce an expression for the exchange energy [41], which gave rise 

to Thomas-Fermi-Dirac theory [42]. Weizsacker [43, 44] was the first to target the non-uniform 

electron density problem in 1935 by providing an expression for the kinetic energy of electrons 

that depends on the gradient of the electron density in the neighborhood. Considering the 

gradient of electron density allowed for adding information about how the electron density 

(1.7) 
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changes in the vicinity of each point in space. This led to two refinements to the Thomas-Fermi 

theory: (1) Thomas-Fermi-Weizsacker theory [44], which corrects the kinetic energy term in 

Thomas-Fermi theory by considering non-uniform electron density but did not consider 

exchange correlation energy, (2) Thomas-Fermi-Dirac-Weizsacker [44] which not only corrects 

the kinetic energy term in Thomas-Fermi but also included the exchange energy term using Dirac 

approximation. However, this theory is still not accurate as it is based on Dirac approximation.  

 DFT started to attract great attention after the work done by Hohenberg and Kohn in 

1964 who proved that the potential is a unique functional of electron density [38]. This is a 

marvelous achievement because it means that for each electron density distribution, there is one 

and only one expression for the energy of the system. The proof of this theorem comes from the 

fact that, in order to determine the Hamiltonian operator, one needs to determine the number of 

electrons in the system as well as the positions of the nuclei. The electron density is very 

powerful in this aspect as the integration of the electron density over the whole space gives the 

number of electrons and the positions of the cusps found when plotting the electron density 

versus position represent the locations of the nuclei. According to Hohenberg-Kohn theorem, the 

energy of the system can be expressed as [38]: 
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where v(r) represents the nuclear potential. The first term represents the nuclear Coulomb 

attraction, the second term is the electron Coulomb repulsion and G[] is the sum of the electron 

kinetic energy, T[], and the exchange and correlation energy [38], Exc[]: 

                              G[] = T[] + Exc[]          (1.9) 

(1.8) 
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 In their original paper, Hohenberg and Kohn did not propose explicit forms to the kinetic 

energy and exchange and correlation energies. Kohn and Sham addressed this problem in 1965 

[45], shortly after the publication of the original Hohenberg-Kohn theorem. Kohn and Sham 

provided an exact expression for T[] as well as a semi-exact expression for Exc[]. The 

calculation of the Exc[] term depends on splitting it into two terms: Exchange term, Ex, and 

Correlation term, Ec where Ex is calculated exactly from Hartree-Fock equations and Ec is 

approximated under the assumption of a uniform electron density. Although the calculation of 

Exc[] is very accurate, it requires large computational power since the calculation of Ex is based 

on Hartree-Fock equations, which involve wave functions instead of electron density. For this 

reason, a simpler expression for Exc[] is suggested by Kohn and Sham assuming uniform 

electron density for the whole expression of Exc[]. From the above discussion, it is obvious that 

the main challenge in DFT is to find the proper expression for T[] and Exc[].   

1.4.3 Basis Sets 

The Kohn-Sham equation, which is analogous to Schrodinger equation, can be written as [45]: 
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where v(r) is the attractive Coulomb potential between the electron and the nuclei, µxc(r) is the 

density of Exc with respect to , and i(r) is the Kohn-Sham orbitals which are analogous to 

wave functions in Schrodinger equation. The numerical solution of (1.10) requires expanding 

Kohn-Sham orbitals in a set of pseudopotentials [46]. 

(1.10) 
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The main types of basis functions are the Slater-Type Orbitals (STOs), Gaussian-Type Orbitals 

(GTOs), Contracted Gaussian Functions (CGFs), and PseudoPotentials (PPs). Slater-Type 

Orbitals [47] are functions which decay exponentially far from the origin. They closely resemble 

the true behavior of atomic wave functions as they have cusps at the nuclei positions. However, 

they require large computational efforts. On the other hand, Gaussian-Type Orbitals [48] are not 

as accurate as STOs but they are easier to handle numerically since the product of two GTOs 

located at different atoms is another GTO located between the atoms, whereas the product of two 

STOs does not lead to an STO [46]. Contracted Gaussian Functions [48] represent a compromise 

between the accuracy of STO and the simplicity of GTO where CGF is constructed by 

approximating STO by a small number of GTOs. PseudoPotentials represent the most attractive 

basis functions for systems with large number of electrons [46]. The idea of using 

PseudoPotentials is based on the fact that the binding energy of solids and molecules is 

dominated by the valence electrons of each atom and hence only the valence electrons need to be 

considered in (10), which tremendously reduce the number of electrons treated explicitly. This 

allows for performing DFT calculations on large systems. 

1.4.4 DFT Functionals  

 As mentioned above, the main challenge in DFT is to find the proper expression for T[] and 

Exc[]. Several expressions have been proposed which are briefly described in this section. 

1.4.4.1 Local Density Approximation (LDA) 

LDA is the first and simplest approximation in DFT. It is based on decomposing the real 

problem of a non-uniform interacting system into two simpler components: a spatially non-
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uniform non-interacting system to calculate T[], and a uniform interacting system to calculate 

Exc[] [34]. The expression of Exc[] follows that proposed by Kohn and Sham
 
[45]: 

                                 r)r()r(][ dE
xcxc                    (1.11) 

where xc[] is the exchange and correlation energy per electron of a uniform electron gas. In 

LDA, xc[] is decomposed, like in Kohn-Sham, into two functional: exchange functional (x) 

and correlation functional (c). The exchange functional is calculated from Dirac’s form [49] 

while the correlation function is unknown and has been simulated in numerical quantum Monte 

Carlo calculations assuming uniform electron density and yielded nearly exact results [50]. In 

LDA, Exc[] is very-well approximated since the errors in c tend to be cancelled by x [46].  

1.4.4.2 Generalized Gradient Approximation 

GGA builds on LDA by considering non-uniform distribution of electrons. In GGA, xc is a 

functional of electron density as well as its gradient which helps to take into account the way by 

which the electron density changes in the vicinity of the point of interest. This is very crucial 

when considering points near the nuclei in which the electron density is strongly changing. 

Nowadays, the most popular GGA in physics is PBE which was proposed by Perdew, Burke, and 

Ernzerhof in 1996 [51] whereas BLYP, which is a combination of Becke’s exchange energy [52] 

with Lee’s, Yang’s, and Parr’s correlation energy [53], is the most popular GGA in chemistry 

[46].   

1.4.4.3 Meta GGA 

Although GAA has shown great improvements in calculations compared to LDA, the chemical 

accuracy, which requires that the errors in calculations should exceed 1kcal/mol, was not reached 
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yet [46]. For this reason, several beyond-GGA functionals were introduced. Meta-GGA [54, 55] 

is an example of beyond-GGA development in which the exchange energy depends on the 

Laplacian of the spin density, 
2, or the local kinetic energy density, . The incorporation of 

Meta-GGA helped to solve some problems of the previous functional such as self-interaction 

problem in the correlation functional, increasing the accuracy of calculating the exchange 

functional by recovering the fourth order gradient expansion for slowly varying densities, and 

obtaining a finite exchange potential at the nucleus [56]. 

1.4.4.4 Hybrid Functionals 

Although LDA and GGA give good approximations for many calculations, they tend to 

underestimate the transition energy. This is because they don’t contain the correct 1/R 

dependence (where R is the distance between charges) in the exchange functional expression. 

Hybrid functionals can remedy this problem through the incorporation of the exact Hartree-Fock 

exchange functional.  

  Hybrid functionals are based on the exact adiabatic approach [57], which allows for the 

exact representation of the exchange and correlation energy functional as: 
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where  is a coupling constant with =0 corresponding to non-interacting system and =1 

corresponding to fully interacting system. A non-interacting system is well-represented by 

Hartree-Fock equations while GGA is a good representation for a fully-interacting system with a 

uniform electron density. A logical approximation to the integral in (12) is to consider the 

extreme cases with =0 and =1 and use a weighted average to approximate Exc[]. Becke’s 

hybrid functional [58], B3, employs this idea and is considered the most successful exchange 
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functional for chemical applications, especially when combined with LYP GGA [53] functional 

for Ec to form B3LYP functional which is the most popular functional in quantum chemistry 

[46]. 

1.5 Why Ta-W-O System? 

Ta2O5 is considered a very promising semiconductor material for water photolysis as its 

conduction band minimum and valence band maximum are suitable for water splitting, as shown 

in Figure 1.8. Furthermore, Ta2O5 is highly stable in aqueous solutions. Unfortunately, the 

material’s bandgap is   3.9 eV, which limits its absorption spectrum to the ultraviolet region (only 

3-5% of the solar spectrum). However, doping Ta2O5 with the suitable material would extend its 

absorption to the visible region (   45% of the solar spectrum), hence enhancing its photocatalytic 

activity. For example, doping Ta2O5 with W is expected to red shift its absorption to the visible 

region as the bandgap of WO3 is 2.7 eV. Also, doping Ta2O5 with 5d materials, such as W, 

should guarantee high carrier mobility due to the relatively higher delocalization of 5d orbitals 

compared to its 3d and 4d counterparts. Note that using pristine WO3 is unfavorable for water 

photolysis as its conduction band minimum is 0.4 eV more positive than hydrogen evolution 

potential (See Figure 1.8).  
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In fact, Ta-W-O system represents an attractive solution towards a highly efficient photoanode in 

photoelectrochemical cells owing to the staggered bandgap between Ta2O5 and WO3. Most of the 

mixed metal oxides proposed to date have a straddling bandgap which enhances recombination, 

leading to a low photoconversion efficiency. For example, Ti-Fe-O has been extensively studied 

and was expected to have a high efficiency by combining the good photocorrosion and charge 

transport properties of TiO2 with the wide absorption spectrum of Fe2O3. However, when such 

system was tested, it only gave an efficiency of 1.2% at 0.7 V bias [24]. The reason behind such 

low efficiency can be understood from Figure 1.9(a), where the bandgap of TiO2 brackets that of 

Fe2O3. Upon illumination, an electron is excited from the valence band of Fe2O3 to its 

conduction band. Due to the band bending, the excited electrons are imposed to move leftwards 

Ta2O5 

3
.9

 e
V

 O2/H2O (1.23 V) 

H+/H2 (0.0 V) 

Figure 1.8: Band positions of common semiconductors at pH 0. Redox couples of interest for water purification are shown 
on the right. The shaded area represents O2(g) and H2(g) generating potentials [59]. 
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(a) 
(b) 

where they get trapped. The trapped electrons will then recombine with a photogenerated hole 

and hence the total current in the system decreases. To assess the efficiency of the Ta-W-O 

system, we compare it to the Ti-Fe-O system, see Figure 1.9(b). The position of the CBM of 

WO3 occurs in the bandgap of Ta2O5. Therefore, upon illumination, an electron may be excited 

from the valence band of Ta2O5 to the conduction band of WO3 and hence decreasing the energy 

required for the electron excitation. Figure 5b also shows that there is an energy barrier for both 

holes and electrons, imposing holes and electrons to move in opposite directions and hence 

maximizing the total current. Based on this comparison, Ta-W-O may be considered as an 

efficient alternative photoanode material in water splitting systems. 

 

 

 

 

 

 

 

The work in this thesis is classified into two main sections. In the first section we study the effect 

of W doping on the optical and electrical properties of Ta2O5 using density functional theory. 

Based on the suggestions from density functional theory, we synthesize and characterize the 

efficiency Ta-W-O alloy as a photoanode in the photoelectrochemical cells. This comprises 

section two.  

Figure 1.9: Energy band diagrams of (a) Ti-Fe-O and (b) Ta-W-O illustrating the charge carrier transport for both systems 
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Chapter 2 

Materials and methods 
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2.1 DFT Calculations 

All the calculations for band structure and effective mass for pristine and W-doped Ta2O5 were 

done using CASTEP package in Materials Studio with plane wave basis sets.  The crystal 

structure for Ta2O5 was taken from our previous work in Ref. [60]. PBE0 hybrid functional as 

well as GGA-PBE were used in all calculations. A 1x1x2 and a 1x2x3 super cells were 

constructed in which one Ta atom was replaced by a W atom to account for 8.3% and 25% 

doping, respectively. A kinetic energy cut-off of 520 eV was employed for all PBE0 

calculations, whereas an energy cut-off of 380 eV was employed for GGA-PBE calculation. 

Different Monkhorst–Pack[61] k-point grids were used according to the size of the cell to make 

the calculations reasonably accurate without being computationally costly. For pristine Ta2O5 

and 50% W doping unit cells, a 2×3×3 k-point grid was utilized. A 2×3×2 and 2×2×1 k-point 

grids were used for the 25% W and 8.3% W, respectively. Norm conserving[62] and ultrasoft 

pseudopotentials[63] were used to approximate the core electrons. 

2.2 Potentiostatic Anodization 

The anodization process was carried out in a two-electrode system with the material to be 

anodized as the anode and platinum foil as the cathode. Anodization was carried out in an 

electrolyte of concentrated HF (48% conc.) and H2SO4 (96%) mixture which were purchased 

from J. T. Baker and BDH Chemicals respectively. Agilent E3612A D C power supply was  

used to supply the required voltage. The anodization setup is shown in Figure 2.1. 

 

 



www.manaraa.com

38 
 

 

 

 

 

 

 

 

 

2.2 Scanning Electron Microscopy  

The surface structure was examined using Zeiss Ulta-60 Field Emission Scanning Electron 

Microscope. Because the pore size was very small, sometimes around 30 nm, the working 

distance was always kept at a height less than 8 mm. For that reason, the InLens detector was 

generally used since it is placed at an appropriate angle from the sample stage. Using the SE2 

detector would not allow for high resolution images at small working distances since the angle 

between the SE2 detector and the sample stage is very acute and hence the signal arriving to the 

SE2 detector would be negligibly small. SE2 detector in this case can only be used in smaller 

magnifications at higher working distances. The Extra High Tension (EHT) was kept below 10 

keV to prevent charging of the samples due to its relatively low conductivity.    

 

Figure 2.1: Potentiostatic anodization setup 
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2.3 Thermal Annealing 

A muffle furnace was used to anneal the fabricated nanotubes so as to crystallize the structure. 

The furnace’s temperature was elevated from room temperature to 450 °C at a rate of 

1°C/minute. The temperature is then soaked for 4 (or 9) hours then allowed to cool back to the 

room temperature at the same rate.  

2.4 X-Ray Diffraction (XRD) 

The XRD analysis was performed on Alpha-1 Panalytical XRD instrument with a CuKα 

radiation at =1.540598A°. The X-Ray tube remains fixed and the sample stage and the detector 

rotate at an angle of  and 2 respectively keeping the angle between the sample and the detector 

at . The scan range was between 20° and 80° with a step size of 0.004° and a time per step of 

8.255 seconds. To allow for this scan range, a divergence slit of 0.5° and an anti-scattering slit of 

1° were used. A soller slit was used in front of the incident beam to limit its axial (vertical/out-

of-plane) divergence. 

2.5 X-Ray Photo-electron Spectroscopy (XPS) 

Compositional analysis was carried out on Thermo K-alpha XPS instrument with an Al anode. A 

point size of diameter 200 µm was specified on each sample to carry out the XPS analysis on it. 

Ni was used a reference since it has a sharp drop-off at the Fermi level.  
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2.6 Optical and Photoelectrochemical Characterization 

The UV-Vis diffuse reflectance measurements were carried out on a Schimadzu UV-VIS 

spectrophotometer with a solid sample holder. A glass disk was used as a reference which 

corresponds to 100% reflectance.  

The photoelectrochemical characterization is done using three-electrode setup in which the metal 

oxide nanotubes act as the working electrode, Pt foil acting as the counter electrode, and a 

Ag/AgCl as the reference electrode. The I-V curve was measured using a CHI760 potentiostat in 

which the voltage ranges between -1 V and +1 V with a scan rate of 10 mV/s. Sun light was 

simulated using a 300 Watt Xenon lamp and an Oriel AM1.5 filter. The light intensity was 

adjusted to 100 mW/cm
2
 using an NREL-calibrated silicon solar cell.  
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Chapter 3 

Density Functional Theory study 

of Ta-W-O system 
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Several polymorphs have been reported for Ta2O5 which can be divided into low-

temperature (L-Ta2O5) and high-temperature (H-Ta2O5) Ta2O5. The most common polymorphs 

in L-Ta2O5 are -Ta2O5 and -Ta2O5. Early experiments by Stephenson et al. reported an 

orthorhombic -Ta2O5 with 22 Ta atoms and 55 O atoms [64]. Aleshina and Loginova pointed 

out later that the data on -Ta2O5 are contradictory and proposed a new orthorhombic structure, 

which consists of four Ta atoms and ten O atoms [65]. A hexagonal structure (-Ta2O5) has been 

observed for Ta2O5 films prepared by chemical vapor deposition [66] and magnetron sputtering 

[67]. However, the calculated density [68] is twice the experimentally reported value [69]. Based 

on the extinction rule, Fukomoto and Miwa [70] suggested one of the lattice constants should be 

twice that of the measured value in order to agree with the measured density. Using density 

functional theory (DFT), it was shown that -Ta2O5 is more stable than -Ta2O5 by 0.8 eV/cell 

[71, 72]. More interestingly, a recent study showed that both - and - phases show some 

instability and that large supercells should be used in calculations to optimize the structure [73]. 

As was the case with L-Ta2O5, orthorhombic [74], tetragonal [75], and monoclinic [76] crystal 

structures were reported for H-Ta2O5. In this work we focus our study on - and -Ta2O5 whose 

crystal structures are shown in Figure 3.1.  

 

 

 

 

 

O 

Ta 

(a) (b) 

Figure 3.1: Schematic diagram of: (a) -Ta2O5, (b) -Ta2O5 
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 The band structure of Ta2O5 represents another controversial issue. Several research 

investigations have employed DFT to calculate the material band structure. Numerous 

functionals have been used in an attempt to get closer to the experimental results. Using 

Generalized Gradient Approximation (GGA), Gu et al.[71] arrived at a bandgap of 0.2 eV and 

1.06 eV for -Ta2O5 and -Ta2O5, respectively. This result was asserted by Wu et al. [77] who 

reported a similar bandgap of 0.1 eV and 1.1 eV for - and -Ta2O5, respectively. However, the 

calculated bandgaps are very far from the experimentally reported bandgap [78-80], which 

would hinder further study on Ta2O5 such as studying the effect of doping on its electrical and 

optical properties.  This underestimation is expected as the exchange-correlation functional in 

GGA does not contain the correct 1/R dependence (R is the charge separation distance) [81]. 

Hubbard correction factor (U-correction) is one of the methods used to overcome this 

underestimation [82]. Ivanov et al.[83] implemented GGA+U to calculate the bandgap of -

Ta2O5, achieving 1.31 eV compared to 1.2 eV without U-correction. Unfortunately, the U-

correction did not give enough improvement to the calculation and therefore other methods have 

been investigated. Hybrid functionals may overcome this problem through the incorporation of 

the exact Hartree-Fock exchange functional [81]. Wu et al. [77] used Heyd-Scuseria-Ernzerhof 

hybrid functional (HSE06) [84, 85], trying to get a more accurate result than that obtained by 

GGA.  Their calculated bandgap was 0.9 eV and 2.0 eV for - and -Ta2O5, respectively. This is 

one step closer to the practical results. However, it is not close enough to experiments.  

 The above introduction shows that there is a lot of controversy about the crystalline 

structure as well as the electronic properties of Ta2O5. This opens the door for further 

improvement and suggestion of new structures that fit better with experimental data. In the next 

section we calculate the band structure of - and -Ta2O5 using hybrid functionals, which 
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allowed us to reduce the error in the calculated bandgao from 75%, using GGA-PBE, to 25% 

using PBE0 hybrid functional. We then propose a new structure for Ta2O5. The calculate 

bandgap for this structure is 3.7 eV, which is only 5% off the experimental value. This is very 

helpful since it allows for more quantitative analysis of the electrical and optical properties of 

Ta2O5 system and facilitates the design of an efficient photoanode for photoelectrochemical cells 

through incorporation of dopants which tunes the bandgap.  

3.1 Bandgap Calculation of - and -Ta2O5  

Figure 3.2 (a,b) shows the energy band structures of - and -Ta2O5 based on the GGA-PBE 

calculations. The -phase has a direct bandgap of 0.2 eV whereas the -phase has an indirect 

bandgap of 1.04 eV, which occurs between the A-point and the -point. The calculated bandgaps 

are in good agreement with calculations from previous reports [71, 77, 83]. 

 

 

 

 

 

 

 

 

 

 
Figure 3.2: Electronic band structure of (a) -Ta2O5, (b) -Ta2O5 under GGA-PBE calculation 
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The partial and total density of states for - and -Ta2O5 is shown in Figure 3.3. The valence 

band is attributed to O 2p orbitals for both - and -phases, whereas Ta 5d orbital has the main 

contribution to the conduction band. The partial density of states of oxygen is similar in both - 

and -phases. On the other hand, the partial density of states of tantalum is quite different in both 

phases, especially in the conduction band. This is the main reason for the difference in the 

bandgap between the - and -phases.  

       

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3: Density of states for - (a-c) and - (d-f) Ta2O5 under GGA-PBE calculation 
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The results shown in Figures 3.2 and 3.3 are in very close agreement with the reported results in 

references [71], [77], and [83]. However, the calculated bandgap is still far from the 

experimental results. This is a well-known feature of pure density functional, such as PBE, that 

tend to underestimate the energy bandgap [80-82, 84].
 
Hybrid functionals are known to give 

more accurate results. The energy band structure for - and -Ta2O5 based on PBE0 hybrid 

functional calculations are shown in Figure 3.4. The calculated bandgap for - and -phases 

using PBE0 functional are 2.45 eV and 2.92 eV, respectively. This corresponds to a reduction in 

the percentage error from 73%, using GGA, to 25%, using PBE0 for -Ta2O5. In -Ta2O5, the 

error is reduced from 95% using GGA to 37% using PBE0. B3LYP is considered another 

commonly used hybrid functional. We carried out bandgap calculations on - and -Ta2O5 using 

B3LYP and found that it gives worse results than PBE0 for both - and -Ta2O5. The calculated 

bandgap for -Ta2O5 under B3LYP is 2.15 eV whereas that of -Ta2O5 is 2.65 eV. The reason 

why GGA gives a poorer result than hybrid functionals is due to the fact that GGA fails to 

correctly describe the asymptotic behavior of the exchange potential. This is remedied in hybrid 

funtionals through incorporating nonlocal Hartree-Fock exchange [86, 87]. It is noteworthy to 

mention that the two structures give comparable bandgaps under hybrid functional calculations, 

which suggests that Ta2O5 is polycrystalline with - and - phases coexisting together. This is in 

line with the X-Ray data that shows an amorphous nature of Ta2O5 [88-91]. 
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We believe that phase transformation is undertaken in Ta2O5 in which all the different phases are 

transformed to a single phase to form crystalline Ta2O5. This also explains the reason of having a 

single bandgap reported in experiments to date. If the two structures have different bandgaps as 

the literature suggests, there would have been two different reported experimental bandgaps. 

Figure 3.5 shows the partial and total density of states under PBE0 calculations for - and -

Ta2O5. By comparing Figure 3.5 with Figure 3.3 we find that both GGA-PBE and PBE0 

calculations are similar with the conduction band shifted to the right in case of PBE0 to signify 

an increase in the bandgap. This implies that GGA-PBE is good enough for qualitative analysis 

whereas PBE0 can be used when quantitative results are required.   

 

 

 

(a) (b) 

Figure 3.4: Electronic band structure for (a) -Ta2O5 and (b) -Ta2O5 under PBE0 calculation
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 Wu et al. have previously used HSE06 [92, 93]
 
hybrid functional to calculate the band 

gap of Ta2O5. However, they arrived at a bandgap of only 0.9 eV and 2 eV for - and -Ta2O5, 

Figure 3.5: Density of states for - (a-c) and - (d-f) Ta2O5 under PBE0 calculation 
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respectively [77]. This corresponds to an error of 77% for -Ta2O5 and 49% for -Ta2O5, 

compared to the measured bandgap.  

 The better results of PBE0 compared to HSE06 may stem from the fact that the exchange 

energy for HSE06 has less Hartree-Fock (HF) fraction than PBE0 as HSE06 employs HF in short 

range exchange only while computing the long range exchange using the pure GGA-PBE 

functional; however, PBE0 does not have this splitting of exchange energy terms. Knowing that 

the use of HF reduces the self-interaction error of density functional [94] suggests that PBE0 

gives more accurate results than HSE06, in agreement with our results. To understand this in 

details, we need to look at the expression for the exchange-correlation expression for both 

functionals. For PBE0, Exc is given by: 
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E is the Hartee-Fock (HF) exchange energy, 
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x
E is the exchange energy based on 

PBE functional, and 
PBE

c
E is the correlation energy which is also based on PBE functional. In 

HSE06, the exchange energy is split into two regions: short range and long range, with a 

parameter  that determines the separation range. Only the short range part is a mixture between 

HF and PBE functional, whereas the long range is expressed in terms of PBE without including 

HF. The resulting expression for the exchange correlation energy is given by:  
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where )(, SRHF

x
E is the short range exchange energy based on HF calculations, )(, SRPBE

x
E  and 

)(, LRPBE

x
E  are the short range and long range PBE exchange energy respectively. By 

comparing equations (3.1) and (3.2) we can see that the correlation energy is the same for both 

hybrid fuctionals, however, the exchange energy for HSE06 has less HF fraction than PBE0 

since HSE06 employs HF in short range exchange only while computing the long range 

exchange using the pure PBE functional. 

 An earlier version of HSE06, called HSE03 [93], has been assessed for the evaluation of 

bandgaps. HSE03 is similar to HSE06 with the only difference being the splitting parameter, . 

In HSE03, two different values of  are used for HF and PBE exchange. On the other hand, for 

HSE06, HF = PBE. Krukau et al. [95] showed that HSE06 introduces more error than HSE03 in 

calculating the bandgap and that the deviation between the two functionals decreases by 

decreasing the value of  used in HSE06 calculations. Therefore, it is relevant here to mention 

the comparison between HSE03 and PBE0 since we are sure that HSE06 would give worse, or at 

most equivalent, results to HSE03. Heyd et al. used HSE03 to calculate the bandgap of forty 

semiconductors and insulators [92]. The mean absolute error was calculated to be 0.26 eV. 

However, the method tends to greatly underestimate solids with large bandgaps. For example, 

the error in calculating MgO bandgap was 0.72 eV, which is about three times higher than the 

mean absolute error. Paier et al. has also compared between HSE03 and PBE0 in calculating the 

bandgap of MgO [96]. PBE0 showed an error of 0.46 eV compared to 1.36 eV for HSE03. This 

is in agreement with our results since Ta2O5 is considered as a relatively high bandgap material 

with a bandgap of about 4 eV. Another advantage of PBE0 over HSE06 is that PBE0 is 
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parameter-free whereas HSE06 depends on the splitting parameter (), whose optimum value 

might vary according to the system of consideration. 

3.2 Proposed Structure  

Our proposed structure (Figure 3.6a) involves re-orienting the conventional -Ta2O5 (Figure 

3.6b) such that the b-vector becomes along the Z-axis and the c-vector is in the XY plane. After 

that, a P1 symmetry is imposed on the structure to maximize the number of degrees of freedom 

for the arrangement of atoms. We then optimized the unit cell and looked for the nearest 

symmetry group. The cell consists of 2 Ta atoms and 5 O atoms. This is the most primitive 

Ta2O5 crystal structure. Having such primitive structure would decrease the computational time 

considerably, allowing for more detailed computations.  Note that the original -structure can be 

reconstructed from a 1×2×1 super cell of the modified -structure. The proposed structure has an 

orthorhombic crystal lattice with PMMM symmetry group. The lattice parameters were 

optimized till we reached a = 7.9 Å, and b = c = 3.75 Å. These values are comparable with those 

found in ref. [70]. The calculated density is about 6.6 g/cm
3
. The calculated density is in good 

agreement with the tabulated experimental density of amorphous Ta2O5, which lies in the range 

5-7.2 g/cm
3
 [97]. It is also in agreement with the calculated results reported by Wu et al. 

[77]which showed a density of 6.82 g/cm
3
. 
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 To determine the bandgap, two levels of computation were carried out: the pure GGA-

PBE functional and the hybrid PBE0 functional. The electronic structure under both levels of 

computations is shown in Figure 3.7. Under pure PBE functional, the calculated bandgap is 1.45 

eV, which is about 0.4 eV higher than -Ta2O5 calculated under the same conditions. For PBE0 

method, the calculated bandgap of the proposed structure was 3.7 eV. This is only 0.2 eV far 

from the reported experimental results, corresponding to a relative error of only 5%. It is worth 

mentioning here that the computational time for our proposed structure is six times less than - 

and -structures. This allows for carrying out detailed computations on large supercells with 

relatively viable computational cost.  

 

 

 

 

 

Figure 3.6: (a) Proposed Ta2O5 crystal structure, (b) conventional -structure 
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For comparison purposes, Table 3.1 shows the computed bandgap for different Ta2O5 

polymorphs using different functionals as compared to the experimental value. Note that the 

calculated bandgap of our proposed structure under PBE0 is the closest to experimental value. 

Figure 3.8 shows the partial and total density of states of our proposed structure under GGA-PBE 

and PBE0 calculations, respectively. As was the case with - and -Ta2O5, O 2p forms the 

valence band of Ta2O5 whereas the conduction band is mainly formed of Ta 5d. 

Table 3.1: Calculated bandgap of -, -, and proposed-Ta2O5 using GGA-PBE, B3LYP, and PBE0 functionals 

Structure Calculated Bandgap (eV) 

 GGA-PBE B3LYP PBE0 

-Ta2O5 0.2 2.15 2.45 

-Ta2O5 1.04 2.65 2.92 

Proposed Structure 1.45 2.71 3.7 
 

Figure 3.7: Electronic band structure of the proposed Ta2O5 structure under (a) GGA-PBE and (b) PBE0 calculations 
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(a) 

(b) 

(c) (f) 

(e) 

(d) 

Figure 3.8: (a),(d) Partial Density of States of O atoms in proposed Ta2O5; (b),(e) Partial Density of States of Ta in proposed 
Ta2O5; (c),(f) Total Density of States of proposed Ta2O5. (a)-(c) uses GGA-PBE calculation and (d)-(f) uses PBE0 calculation 
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3.3 Calculated Electronic Structure of Ta-W-O System 

3.3.1 Band Structure 

Figure 3.9 shows the band structure of W-doped Ta2O5. For the sample containing 8.3% W, the 

effect of W appears as an impurity state near the conduction band. However, as the W content 

increases, the band structure is significantly modified and the conduction band edge moves 

downwards. This is in agreement with the findings of Wang et al.[98]. We find that the bandgap 

monotonically decreases from 3.7 eV in pristine Ta2O5 to 2.77, 2.07, and 1.04 eV for 8.3%, 25%, 

and 50% of W content, respectively. The reduction in bandgap with increasing W content can be 

understood from the density of states plotted in Figure 2.10. In particular, the partial density of 

states of Ta and O as well as the total density of states in pristine Ta2O5 are illustrated in Figure 

3.10. The valence band maximum (VBM) is dominated by O 2p orbitals whereas the conduction 

band minimum (CBM) is dominated by Ta 5d orbitals, in agreement with Refs [60, 99, 100]. 

Therefore, substituting Ta with W is expected to modify the conduction band while keeping the 

valence band intact. Figure 3.10c shows that the total density of states of the doped Ta2O5 near 

the CBM agrees very well with the partial density of states of W 5d shown in Figure 2.10d. This 

asserts that the reduction in the bandgap is due to the incorporation of W. The CBM is shifted 

downwards because W 5d orbital has lower energy than Ta 5d orbital[101]. Note that the energy 

of the VBM remains nearly constant for all doped structures. However, its k-position seems to 

shift towards point B as the concentration of W increases. In fact, a closer look at the band 

structure shows that as the concentration of W increases, the shift of the VBM towards B point is 

accompanied by a lowering of the conduction band states at points B and X. This also suggests 

another transition between the VBM and the conduction band state at point B, which has a larger 

energy gap but lower momentum change and hence high probability of transition.   
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(a) (b) 

(c) (d) 

Figure 3.9: Band structure for (a) pristine Ta2O5, (b) 8.3%W, (c) 25%W, and (d) 50%W-doped Ta2O5 under PBE0 calculation 
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Note also the change in the VBM and CBM positions upon the incorporation of W, resulting in 

the formation of indirect bandgaps. The material becomes highly indirect upon the addition of a 

small amount of W, with the phonon momentum, required for the electron excitation, increasing 

by more than three times at 2.5% W compared to pristine Ta2O5. However, as the amount of W 

increases, the material becomes less indirect, going back to its initial state at 50% W. Table 1 and 

Figure 3.11 summarize the effect of W content on the band structure of Ta2O5. It can be seen that 

both the bandgap and the phonon momentum decrease with increasing the W content, two effects 

in the right direction. It is worth mentioning that although the electronic transition between VBM 

(a) 

(b) 

(c) 

(d) 

Figure 3.10: (a,b) Partial and Total Density of States in pristine Ta2O5, (c) Total Density of States in pristine as well 
as Ta-W-O alloys, (d) Partial Density of States due to W 5d for different Ta-W-O alloys 
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and CBM is highly indirect at 25% W content, there exists another possible transition between 

VBM and point B in the conduction band. This transition is more direct and hence have larger 

absorption coefficient, requiring a phonon momentum of 3.95×10
-25

 N.s, which is about half that 

required for the transition between VBM and CBM, with a photon energy of around 2.4 eV, 

which is still very close to the optimum value.  

Table 3.2: Valence Band Maximum, Conduction Band Minimum and the corresponding required phonon momentum for 
electron excitation at different W content 

Structure k-value of VBM K-value of CBM 

 

Phonon Momentum ×10
-25

 (N.s) 

Pristine Ta2O5 (-0.5, 0.5, 0) (-0.25, 0.5,0) 2.1 

8.3%W (0.5,0.5,0.5) (0, 0, 0) 6.8 

25%W (0.5,0.2,0.2) (0, 0.5, 0) 7.0 

50%W (-0.5, 0.5, 0) (-0.25, 0.5,0) 2.1 

  

 

 

 

 

 

 

 

In conventional mixed metal oxide systems, the bandgap decreases till it reaches the value of the 

constituent metal oxide with the lower bandgap. For example, upon increasing the content of Fe 

in the Ti-Fe-O system, the bandgap of the mixed metal oxide initially decreases from 3.2 eV (the 

WO3 

bandg

ap’s 

Figure 3.11: The bandgap (red) and phonon momentum (black) required for 
electron transition in Ta-W-O as a function of W concentration 



www.manaraa.com

59 
 

bandgap of TiO2) to 2.1 eV (the bandgap of Fe2O3)[102]. Afterwards, the bandgap remains 

constant irrespective of the amount of Fe added[102]. However, Figure 3.11 shows a very 

interesting phenomenon. At W content greater than 17%, the bandgap of the Ta-W-O system 

falls below 2.4 eV, the bandgap of pristine WO3. In other words, the bandgap of the mixed metal 

oxide becomes lower than the bandgaps of its constituent metal oxides (Ta2O5 and WO3). This 

phenomenon can be understood from the expression for the bandgap of any semiconductor alloy, 

AxB1-x, where A and B are the pristine semiconductors forming the alloy. In most semiconductor 

alloys, the alloy bandgap can be determined as the weighted average of its semiconductor 

constituents[103]: 

B

g

A

g

AB

g ExxExE )1()(           (3.1), 

where x denotes composition, 
AB

gE is the bandgap of the alloy, 
A

gE and 
B

gE are the bandgaps of 

constituent A and B, respectively. Equation (3.1) guarantees that the bandgap of the alloy always 

lies between that of its constituents. However, some semiconductor alloys deviate from such 

linear relationship to have a quadratic form[104]:  

    )1()(  xbxxE AB

g            (3.2), 

where b is known as the bowing parameter and is generally composition independent. It is 

thought that the bowing parameter is originated from three distinct physical contributions: (i) 

volume change due to the change in the lattice constants of the alloy constituents when they form 

the alloy; (ii) charge exchange occurring  when a highly electronegative atom substitutes a less 

electronegative atom, which creates localized energy levels close to the CBM that interacts with 
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the extended states and lowers the conduction band; (iii) structural relaxation due to the 

relaxation of the cation-anion bond lengths in the alloy[103, 104]. 

 Using equations (3.1) and (3.2) and the data given in Figure 3.11, the calculated bowing 

parameter for Ta-W-O system shows a very large and composition dependent bowing parameter 

of -8.6, -6.1, and -7.7 for the materials containing 8.3% W, 25% W, and 50% W, respectively. A 

similar phenomenon was reported for GaAsN alloys[104]. While for GaAsN system the bowing 

parameter monotonically decreased with increasing N concentration, for Ta-W-O system, the 

bowing parameter shows  a minimum value at ~25% of W content. In the GaAsN system, the 

large bowing parameter was due to the localized energy state that N introduces below the 

conduction band of GaAs[104]. This localized state has a strong charge exchange with the 

conduction band and it essentially brings the conduction band edge downwards leading to a 

decrease in the bandgap. In such system the bowing parameter decreases with increasing the N 

content because the N 2p orbital is merged with the extended states in the conduction band at 

higher N concentration and thus it is no longer localized. Therefore, the charge exchange effect 

is no longer valid. This suggests that for Ta-W-O system, there would be different mechanisms 

causing the bowing parameter at different W concentrations. We think that at 8.3%W, the 

dominant contribution to the bowing parameter is charge exchange, similar to GaAsN system. 

This is asserted by Figure 1b, which shows a localized W 5d state close to the extended states 

that strengthens charge exchange. Note also that the band structure for 8.3%W is significantly 

different from pristine Ta2O5 (compare Figures 3.9a and b) where the bandgap becomes 

considerably indirect indicating a strong interaction between W and Ta2O5 orbitals. At 25% of W 

content, the bowing parameter is still high but it is less than the 8.3% W case, indicating that the 

contribution of charge exchange is reduced, which is confirmed by the decreased indirect 
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bandgap that moved closer to that of pristine Ta2O5. For 50% of W content, the indirect bandgap 

is exactly the same as pristine Ta2O5, which infers a minimum interaction between W and Ta2O5 

orbitals. However, the bowing parameter for 50% is higher than its 25% W counterpart, 

indicating that another mechanism is contributing to the bowing parameter. At this high 

concentration, the W atoms tend to cause volume change in the crystal lattice due to the different 

ionic radii of Ta2O5 and WO3.  

3.3.2 Hole Effective mass 

Although the band structure calculations using GGA-PBE functional underestimate the bandgap 

of systems with strongly correlated electrons, they can still give a qualitative estimation of the 

effective mass because the effective mass depends on the curvature of the VBM and CBM rather 

than on their values. Figure 3.12 shows the band structures using GGA-PBE functional in which 

the valence band maximum is designated by a circle, asserting the fact that VBM and CBM still 

preserve their curvature under GGA calculations. In this study, we focus on the effective mass of 

holes only because the water splitting device is a minority carrier device and the Ta-W-O system 

is an n-type semiconductor. Note that a low effective mass is a desirable property providing a 

high charge carrier mobility and correspondingly, a high solar-to-hydrogen conversion 

efficiency[101]. 
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The effective mass tensor is given by [105]: 
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where   is the energy at the specified k-point. To calculate the second derivatives given in 

equation (3.3), finite difference approximation was implemented by 

(a) 
(b) 

(c) (d) 

Figure 3.12: Band structure of (a) pristine Ta2O5, Ta2O5 containing (b) 8.3%W, (c) 25%W, and (d) 50%W under GGA-
PBE Calculation. Note the circle which signifies the valence band minimum as compared to Figure 3.9 
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where {i, j, k = x, y, z} and ki=kj=kk=0.1 (a.u.
-1

). After computing the tensor elements, the 

matrix is diagonalized to find the eigenvalues and eigenvectors that is the magnitudes and the 

principal directions of the effective mass.  

After calculating the eigenvalues, the effective mass can be calculated as follows: 
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Table 3.3 summarizes the calculated effective mass for Ta-W-O system under PBE0 and GGA-

PBE functionals. Although the numbers for PBE0 and GGA-PBE are in some cases different, it 

should be stressed that they show the same trend. The principal axes for the effective mass were 

found to be x, y, and z-directions. The effective mass shows an anisotropic direction dependency 

by showing the smallest value in y-direction which is the most favorable direction for the hole 

transport. As the W content increases, the effective mass in the y-direction becomes smaller 

compared to other directions, making the hole transport in the y-direction more favorable. The 

monotonic decrease of the effective mass as a function of the W content can be attributed to the 

delocalization of the electron energy levels from W. At 25% and 50% of W contents, the 

effective mass in the y-direction is approximately 0.5me and 0.25me, respectively, where me is 

the electron rest mass. It is noteworthy to mention that the effective mass of holes in TiO2 is 

(0.8±0.2) me [106], therefore Ta-W-O system is expected to have higher mobility and hence 

higher solar-to-hydrogen conversion efficiency. Furthermore, the effective mass of hole in Ta-
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W-O system is comparable to that in III-V semiconductors, and Ta2O5 has a much higher 

dielectric constant ensuring a higher diffusion length according to the following relation: 

2/1

02










D

D
qN

kT
L


          (3.7) 

where DL  is the diffusion length, is the relative dielectric constant, 
0 is the permittivity of free 

space, k is Boltzmann constant, T is the absolute temperate, q is the electron charge, and DN is 

the doping concentration. A larger diffusion length indicates less recombination of charge 

carrier, resulting in higher overall conversion efficiency. This suggests that Ta-W-O 

semiconductor alloys can replace expensive III-V semiconductors for high efficiency solar cells 

in space applications. 

Table 3.3: Calculated effective mass for Ta-W-O using PBE0 and GGA-PBE functionals 

W% PBE0 Calculation GGA-PBE Calculation 

 mx/me my/me mz/me mx/me my/me mz/me 

Pristine Ta2O5 1.52 1.09 1.27 1.55 0.89 1.55 

8.3% W 1.44 0.68 20.4 1.61 0.74 21.5 

25% W 2.49 0.46 14.67 2.12 0.69 15.78 

50% W 3.32 0.25 0.92 1.36 0.67 1.47 
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Chapter 4 

Experimental Results 
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4.1 Anodization of Ta and Ta-W films 

The anodization of Ta foil to form Ta2O5 nanotubes can be done in an electrolyte containing a 

mixture of concentrated HF and H2SO4[91, 107, 108]. However, the anodization parameters 

should be carefully adjusted in order to obtain nanotubes that are well-adhered to the substrate. 

For example, increasing the anodization time and/or HF content beyond a certain limit leads to 

the detachment of the nanotubes from the substrate due to the formation of TaF5 layer between 

the Ta2O5 layer and the Ta substrate[91, 107]. 

Figure 4.1 shows the effect of anodization time, applied voltage, and HF concentration on the 

nanotube length, diameter, and wall thickness. In general, longer nanotubes can be achieved in 

10%W alloy compared to 2.5%W alloy. This enhances the absorption for the 10%W alloy since 

it allows for a longer path for photons and hence a higher probability of photon absorption. Also 

the nanotube thickness for 10%W alloy is smaller than that its 2.5%W counterpart, which 

improves charge separation characteristics since the photo-generated charge carriers would have 

to move a shorter distance and hence the probability of charge recombination decreases. 

Furthermore, the nanotube diameter for the 2.5%W is smaller than that of 10%W. It can be seen 

from Figure 4.1(a,b) that anodization time has more pronounced effect on the 10%W alloy 

compared to that of 2.5%W. For example, the nanotube length changes from 0.84 µm to 1.2 µm 

for 2.5% W alloy whereas it changes from 1.2 µm to 6.4 µm for 10%W alloy as the anodization 

time increases from 15 minutes to 35 minutes. Increasing the anodization potential increases the 

nanotube length and diameter for both 2.5%W and 10%W alloys, with a higher effect on the 

10%W alloy (Figure 4.1(c,d)). The nanotube thickness increases from 9 nm to 20.5 nm for the 

2.5%W alloy whereas it nearly remains constant at around 10.5 nm for the 10%W alloy as the 

anodization potential increases from 10 V to 20 V. Although the nanotube length for the 2.5%W 
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alloy doesn’t seem to be affected by the anodization time and the applied potential, it seems that 

it is influenced by the HF concentration where the nanotube length increases from 0.6 µm to 3.2 

µm as the HF concentration increases from 0.51 M to 0.85 M then it decreases to 1.2 µm at 1.17 

M HF (Figure 4.1e). The nanotube length, diameter, and thickness show the same dependence on 

HF concentration. Figure 4.2 shows selected SEM images for the nanotubes that were anodized 

at different conditions.   

      

              

     

Figure 4.1: (a,b) The effect of anodization time on the nanotube length, thickness, and wall thickness for (a) 2.5%W alloy, (b) 
10%W alloy. (c,d) The effect of anodization potential on the nanotube length, thickness, and wall thickness for (c) 2.5%W 
alloy, (d) 10%W alloy. (e,f) The effect of HF conc on the nanotube length, thickness, and wall thickness for (e) 2.5%W alloy, (f) 
10%W alloy  

(d) 

(e) (f) 

(c) 

(a) (b) 
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Figure 4.2: SEM images for 2.5%W alloy (a-h) and 10%W alloy (i-o). The anodization conditions are: (a) t=5min, V=14.5V, 
HF=1.17M, (b) t=15min, V=14.5V, HF=1.17M, (c) t=25min, V=14.5V, HF=1.17M, (d) t=35min, V=14.5V, HF=1.17M, (e) t=35min, 
V=10V, HF=1.17M, (f) t=35min, V=20V, HF=1.17M, (g) t=35min, V=20V, HF=0.85M, (h) t=35min, V=20V, HF=0.51M, (i) 
t=15min, V=20V, HF=1.17M, (j) t=25min, V=20V, HF=1.17M, (k) t=35min, V=20V, HF=1.17M, (l) t=35min, V=14.5V, HF=1.17M, 
(m) t=35min, V=25V, HF=1.17M, (n) t=35min, V=20V, HF=0.85M, (o) t=35min, V=20V, HF=0.51M 

Although we were able to fabricate nanotubes with controlled length, diameter, and wall 

thickness, they don’t adhere well to the substrate. This is not suitable for photoelectrochemical 

applications since we need to put the elecrode in a basic medium which makes the nanotubes to 

peel off the substrate. We found out that anodizing Ta and Ta-W foils in an electrolyte of 2.9M 

HF and 16.4M H2SO4 at 15 V lead to the formation of well-adhered nanotube oxide layer on top 

of the metal substrate. For the pure Ta substrate, the surface starts to crack after 4 minutes of 

anodization whereas it cracks after 3 and 2.5 minutes for the 2.5%W and 10%W respectively. 

The decrease in the maximum anodization time with increasing W content can be attributed to 

the stresses in the crystal lattice due to the substitution of some Ta atoms with W which caused 

the cracks to appear at earlier time. It is noteworthy that for pure Ta2O5 and 2.5%W alloy, we 

were able to form nanotubes after 20 seconds only whereas we had to go beyond 2 minutes of 

anodization for the 10%W alloy in order to obtain nanotubular structure. This is probably due to 

the presence of WO3 which has different reactivity with the F
-
 ions than that of Ta2O5. This is 

asserted from the fact that the maximum nanotube length that we were able to obtain decreases 

progressively by increasing W content from 3.3 µm for pure Ta2O5, to 2.1 µm for 2.5%W, to 1.4 

µm for 10%W.  Figure 4.3 shows the SEM images for the samples anodized at 2.9M HF.  

(m) (n) (o) 

(a) 
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Figure 4.3: SEM images for pure Ta2O5 (a-c), 2.5%W alloy (d-f) and 10%W alloy (g,h) anodized at 15 V, 16.4M H2SO4 and 
2.9M HF for (a,d) 20 seconds, (b,f) 3 minutes, (c) 4 minutes, (e,h) 2.5 minutes, (g) 2 minutes 

4.2 X-Ray Diffraction 

Figure 4.4 shows the XRD pattern for pristine and W-doped Ta2O5. It turned out that the 

nanotubes have an orthorhombic crystal structure with lattice parameters a=6.35 A°, b=3.74 A°, 

and c=3.64 A°. It is clear that as the W content increases, the XRD peaks are consistently shifted 

towards lower 2Ɵ values, meaning that the lattice is expanded as a function of W content. 

Specifically, the lattice parameters for 2.5% and 10% W are a=6.39 A°, b=3.8 A°, c=3.59 A°, 

and a=6.43 A°, b=3.83 A°, c=3.59 A°, respectively. This shows a lattice expansion in a and b 

directions. Knowing that the atomic radius of W is greater than that of Ta, we could refer the 

(b) (c) 

(d) (e) (f) 

(g) (h) 
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lattice expansion to the incorporation of W. In fact, this tells us that W is preferably incorporated 

in planes that have projections in yz- and/or xz-planes such as (100), (010), (110), and (101). 

This is very useful when trying to model such system since it will help build a more realistic 

model and hence have more reliable information from the calculations. More importantly, it 

helps in designing more efficient nanotubular photoanodes for solar water splitting. This is 

because upon illumination, electrons are excited from the valence band of Ta2O5 to the 

conduction band of WO3. Also it is known that charge separation should occur perpendicular to 

light absorption in order to attain high conversion efficiency and hence the nanotubes should be 

oriented such that the W-containing planes are aligned perpendicular to light absorption. In fact, 

that was the reason for low quantum efficiency in Ta3N5 nanotubular photoanodes as the 

nanotubes gets longer since the electrons have to travel for a longer distance till they reach the 

back contact which increases the probability of electron-hole recombination[109]. 
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Figure 4.5 shows the XRD pattern for pristine and W-doped Ta2O5 for different annealing times. 

As the annealing time increases, the peaks are shifted towards larger 2Ɵ values indicating a 

contraction in the crystal lattice. This is because heating the lattice for longer times allows the 

atoms to readjust their positions, minimizing the total energy of the system. Also note that the 

extent peak shifting decreases as the W content increases. This is because W atom is larger than 

Ta and so it allows less space for the atoms to move in the lattice, decreasing the extent of 

freedom for readjustment.  

 

 

 

Figure 4.4: XRD pattern for pristine Ta2O5, 2.5%W, and 10%W, annealed for 4 hours 
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Figure 4.5: XRD pattern for pristine and W-doped Ta2O5 at 4 and 9 hours annealing. (a)-(c) Pristine Ta2O5, (d)-(f) 2.5% W, (g)-
(i) 10%W. 

4.3 X-Ray Photo-electron Spectroscopy (XPS) 

In order to study the composition of the fabricated Ta2O5 and Ta-W-O nanotubes, XPS analysis 

was performed. The O1s peak was observed between 530.5 and 530.9 eV. This is in very good 

agreement with the O1s peak observed in Ta2O5 and WO3 which lies between 530.3 and 530.8 

eV. The shoulder in the O1s peak indicates the formation of Ta and /or W oxide. In pure Ta2O5, 

Ta4f peaks exist at 26.3 eV and 28.1 eV corresponding to 4f7/2 and 4f5/2 peaks respectively 

with a doublet separation of 1.8 eV which signifies the presence of Ta
+5

 state[110]. As the W 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 



www.manaraa.com

74 
 

content increases to 2.5%, both the O1s peak as well as the Ta 4f peaks are shifted towards 

higher binding energy, indicating a decrease in the electron cloud around both oxygen and 

tantalum. This suggests an electron transfer from both O and Ta to W. This suggestion is asserted 

in Figure 4.6e which shows W 4f spectrum in which 4f7/2 and 4f5/2 peaks shift in opposite 

directions towards each other forming one peak instead of a doublet. The shift of 4f5/2 peak 

towards lower binding energy indicates an increase of the electron cloud around W which 

confirms the charge transfer from O and Ta to W. For 10%W, the O1s peak lies midway between 

that in pure Ta2O5 and 2.5%W case. Also the Ta4f peaks are shifted back towards lower binding 

energies. More interestingly, the W4f peaks are clearly deconvoluted into 4f7/2 and 4f5/2 peaks. 

However, the doublet separation is only 1.9 eV compared to 2.2 eV which is reported in the 

literature[111]. This deconvolution is a result of both 4f7/2 and 4f5/2 peaks moving apart from 

each other. The shift W 4f7/2 towards lower binding energy indicates a charge transfer from O to 

W. Note also that the shift of Ta 4f towards lower binding energy at 10%W indicates that some 

electrons are transferred from O to Ta.       
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Figure 4.6: XPS analysis for (a) –(b)pure Ta2O5, (c)-(e)2.5%W, and (f)-(h)10%W 

4.4 Diffuse Reflectance 

Figure 4.7 shows the absorption spectrum of pure Ta2O5 as well as the W-doped Ta2O5. It is 

clear that as the W content increases, the absorption is red shifted corresponding to a decrease in 

the bandgap. This reduction in the bandgap is due to lowering of the conduction band edge since 
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it is well known that the conduction band of Ta2O5 is due to Ta 5d[60, 112] orbital and that W 5d 

is lower in energy than Ta 5d[113].  

 

Figure 4.7: Diffuse reflectance spectra (DRS) for pure Ta2O5 and Ta–W-O nanotube electrodes annealed at 450°C for 9h in air. 

Furthermore, there is an absorption tail which extends in the visible region as the content of W 

increases. This can be understood from the Crystal Field Theory where the W 5d orbitals are 

split into a set of filled orbitals occurring at a lower energy and another set of empty orbitals 

occurring at a higher energy as shown in Figure 4.8. The splitting occurs when a set of negative 

point charges move close to W atoms. The energy of some of the d-orbitals rises due to the 

repulsion between the d-oribtal electrons and the electrons approaching the W
+6

. Each d-orbital 

is affected differently depending on the geometry of the surrounding negative charges, as shown 

in Figure 4.8. This asserts our assumption that upon illumination, the electrons are excited from 

the valence band of Ta2O5 to the conduction of WO3. When the electrons are transferred towards 

WO3, they increase the charge density around the W atoms causing the splitting of the d-orbitals. 

Figure 4.7 asserts that the extended absorption is mainly due to splitting of W 5d orbital and not 

Ta 5d because the absorption tail gets more extended as the amount of W increases.  
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4.5 I-V Measurements 
Figure 4.9 shows the photocurrent density versus the applied potential for pure Ta2O5 and Ta-W-

O nanotubes. It is clear that the photocurrent increases by 100 times in going from pure Ta2O5 to 

10%W alloy. The photocurrent increases monotonically as the W content increases. Furthermore, 

knowing that Ta-W-O system has an indirect bandgap[60], the length of the nanotubes is a 

significant factor in improving photon absorption since indirect bandgap materials have low 

absorption coefficients compared to their direct bandgap counterparts[114] and hence the optical 

path of light needs to be increased in order to increase the probability of photon absorption.  This 

is asserted in Figure 4.9 where the photocurrent increases by more than five times with 

increasing the nanotube length of 10%W alloy from 0.5 µm to 1.4 µm. This is due to 

enhancement in photon absorption since the probability of photon absorption increases and hence 
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Figure 4.8: d-orbital splitting of metal ions and its dependence on the surrounding charge distribution 
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more photons are being absorbed which, in turn, increases the photocurrent. Moreover, the onset 

potential is shifted towards more negative values as the W content increases. This is because as 

the W content increases, the donor energy level is shifted more towards the conduction band 

edge which, in turn, shifts the Fermi level towards more negative potential. This is a desirable 

property since this open circuit potential represents the contribution of light towards the 

minimum potential difference required for water splitting (1.23 V)[7]. Table 4.1 summarizes the 

onset potential as well as the maximum photocurrent density for Ta2O5 and Ta-W-O nanotubes.  

 

 

Figure 4.9: Photocurrent density vs potential in 1M KOH solution under AM1.5 illumination for pure Ta2O5 and Ta-W-O 
nanotubes 
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Table 4.4: Onset potential and maximum photocurrent for pure Ta2O5 and Ta-W-O nanotubes 

 Onset Potential (V) Jmax (mA/cm
2
) 

Pure Ta2O5 -0.57 0.06 

0.5 µm, 2.5% W -1.025 0.38 

0.5 µm, 10% W -1.07 1.13 

1.4 µm, 10% W -1.06 6.08 
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Chapter 5 

Conclusion and Future Work 
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5.1 Conclusions 

In this dissertation we studied the band structure and charge transfer properties of Ta-W-O 

system and the possibility of using it as a photoanode in photoelectrochemical water splitting 

system. We used Density Functional Theory in order to figure out the optimum W content that 

has optimum bandgap and charge carrier mobility. In order to do that, an accurate model for 

Ta2O5 crystal structure is required. All of Ta2O5 crystal structures proposed to date are not 

accurate enough since they cannot reproduce the practical bandgap. We found out that PBE0 

hybrid functional is an efficient method for the bandgap estimation of Ta2O5. PBE0 showed 

better results compared to HSE06 due to the incorporation of HF exchange energy in short and 

long ranges, which allowed for a smaller self-interaction error. The calculated bandgap for -

Ta2O5 under PBE0 calculation is 2.92 eV, which is the closest reported bandgap to experiment so 

far, suggesting that low-level computation can be used for qualitative analysis whereas high-

level computation can be used whenever accurate results are required, at the expense of a more 

demanding computational power. We also proposed a new Ta2O5 orthorhombic structure. Using 

the PBE0 hybrid functional, this structure showed a bandgap energy of 3.7 eV, which is only 0.2 

eV from the reported experimental value. The structure has a PMMM symmetry group with 

lattice constants a = 7.9 Å, and b = c = 3.75 Å. The computational time of our proposed structure 

is six times less than other reported structures under the same computational method, which 

allows for more detailed computations and hence investigation of more subtle properties of 

Ta2O5. We recommend this structure for further theoretical investigations and experimental 

verifications as it provides a minimum error in the calculated bandgap.   
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Based on our proposed structure, we calculated the band gap and the holes effective mass for Ta-

W-O system. We chose the hole effective mass since the photoelectrochemical cell is a minority 

carrier device and the Ta-W-O alloy is an n-type semiconductor. We studied different alloy 

compositions with 8.3%, 25%, and 50% W content. We found that Ta-W-O semiconductor 

alloys have a widely tunable bandgap from 3.7 eV to 1 eV. The bandgap monotonically 

decreases with increasing the W content. The bandgap deviates from the linear composition 

dependency, showing a large composition-dependent bowing parameter. The bowing parameter 

at the different W content originates from different physical phenomena. At low W content, a 

high bowing parameter of -8.6 originates from charge exchange due to the interaction of the 

localized electron energy level in W with the extended states of the conduction band. The charge 

exchange decreases with increasing the W content due to the merging of the delocalized electron 

energy level in W with the extended states of the conduction band, decreasing the bowing 

parameter to -6.1 at 25% of W content. At 50%W, the bowing parameter increases again to -7.7 

due to the volume change as observed by the XRD investigation. In fact, at W concentration 

higher than 10%, Ta2O5 and WO3 tend to form microscopic heterostructures such that electrons 

are excited from the valence band of Ta2O5 to the conduction band of WO3. The created 

electron-hole pair is well extracted due to the staggered bandgap nature of Ta-W-O alloy. 

Considering alloys such as Ti-Fe-O which suffer from excessive recombination due to the 

straddling bandgap nature, our results suggest that staggered bandgap would be desirable 

characteristics for efficient charge carrier separation.  We also show that the effective mass of 

holes in pristine Ta2O5 as well as Ta-W-O alloys has minimum value along the y-direction. The 

effective mass in the y-direction monotonically decreases with increasing W content. At 
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sufficiently large W content (> 25 %), the effective mass is comparable to that of III-V 

semiconductors. 

Based on the previous discussion, we recommend using 25% W system as a photoanode for 

water splitting since it has an optimum bandgap beside having an efficient charge separation 

because of the staggered bandgap effect. Furthermore, the hole effective mass at this W 

concentration is half that of pristine Ta2O5 and TiO2, suggesting a large hole mobility and hence 

a minimum charge recombination. Of course, the practical feasibility of producing alloys with 

such high content of mixing ratio needs to be validated experimentally; however, the undertaken 

preliminary experiments show that it is possible to synthesize Ta-W-O alloys with W content up 

to 10% without severe problems. Furthermore, the analysis we already provided gives a good 

guidance on designing efficient active materials for water splitting systems as well as solar cells 

and points out some of the interesting phenomena that might occur for alloy systems at large 

mixing concentrations.  We are currently extending this work to include the synthesis of larger 

W content Ta-W-O alloys. In fact, it turns out to be that this process becomes straight forward if 

we start with Ta-W alloys and then oxidize the alloy since W is totally soluble in Ta [115].       

In order to test the efficiency of Ta-W-O system in water splitting, we investigated two alloys 

with a W content of 2.5% and 10%. We were unable to test higher concentrations due to time 

limitations. We were able to fabricate well-adhered nanotubes with controlled length, wall 

thickness, and diameter. We found out that the surface starts to crack after 4 minutes of 

anodization for pure Ta samples. For 2.5%W and 10%W samples, the surface cracks after 3 and 

2.5 minutes respectively. The decrease in the maximum anodization time with increasing W 

content can be attributed to the stresses in the crystal lattice due to the substitution of some Ta 

atoms with W which caused the cracks to appear at earlier time. Optical and structure 
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characterizations were performed on the samples. Diffuse reflectance measurements show that as 

the W content increases, the absorption is red shifted corresponding to a decrease in the bandgap, 

which is caused due to lowering of the conduction band edge. Furthermore, there is an 

absorption tail which extends in the visible region as the content of W increases due to the 

splitting of W 5d orbitals. XPS measurements show that the O1s and Ta 4f peaks are shifted 

towards higher binding energy for 2.5%W alloy compared to pure Ta2O5, which suggests a 

charge transfer from O and Ta atoms to W atoms, in agreement with the charge transfer model 

derived from DFT. However, for 10%W, charge transfer is divided between Ta and W in which 

electrons are transferred from O atoms to both W and Ta atoms. This can be seen from the Ta4f 

and W 4f7/2 peaks being shifted towards lower binding energy, indicating an increase of charge 

density around Ta and W. Finally, I-V measurements show a 100x increase in the photocurrent 

in case of 10%W alloy as compared to pristine Ta2O5. 

5.2 Future Work 

Detailed DFT studies will be carried out on Ta-W-O system to understand its photocatalytic 

properties. Namely, the effect of point defects, such as oxygen vacancies, on the reactivity of Ta-

W-O system will be considered. Secondly, spatial charge distribution will be calculated which 

should give strong, direct evidence on the origin of charge transfer and would help proof that 

electrons are excited from the valence band of Ta2O5 to the conduction band of WO3. 

Furthermore, the effect of spatial distribution of W on the electronic and optical properties of the 

system will be studied. Moreover, the surface reactivity of the different Ta-W-O facets will be 

studied and the preferred surface for hydrogen production shall be determined.  Also the effect of 
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other dopants, namely isovalent elements and rare-earth elements, on the structural and 

electronic properties of Ta2O5 will be studied and compared with Ta-W-O system. 

On the practical side, higher W content alloys will be fabricated and their structural, electrical, 

and optical properties will be determined using XRD, XPS, diffuse reflectance, and 

photoelectrochemical techniques. Namely, 25% and 50%W alloys will be studied since they are 

expected to have promising optical properties as found from DFT simulations.    
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